Problem
给定四种颜色,去给一个长度为$n(n \le 10^5)$的环染色
有$m$种长度为$4$的序列不能在环中出现
通过旋转能够重合的环染色记做同一种染色法,求不同的染色方案数
Solution
通过旋转能够产生n种置换,将置换按照$gcd(step,n)$分类
则答案为$\frac{\sum_{d|n}f(d)*phi(\frac{n}{d})}{n}$
考虑计算$f(d)$,即统计长度为$d$的带$ban$位置的环染色方案数
我们建立一个$64*64$的矩阵$M$,表示长度为$3$的序列之间的转移情况
则$f(d)$为$M^d$的斜对角数字之和,即$blk=\sqrt{n}$
我们用$BSGS$来处理$M^d=(M^{blk})^{\frac{d}{blk}}*M^{d % blk}$
每次通过两个矩阵的乘积来计算$f(d)$即可
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 
 | #include <bits/stdc++.h>using namespace std;
 using ll = long long;
 const int L = 64;
 const int P = 998244353;
 const int N = 100000 + 10;
 #define rep(i, n) for (int i = 0; i < n; i++)
 int n, m;
 struct MTX {
 int v[L][L];
 void init() {
 reset();
 rep(i, L) v[i][i] = 1;
 }
 void conn() {
 rep(i, 4) rep(j, 4) rep(k, 4) rep(l, 4) {
 v[(i * 4 + j) * 4 + k][(j * 4 + k) * 4 + l] = 1;
 }
 }
 void set() { rep(i, L) rep(j, L) v[i][j] = 1; }
 void reset() { memset(v, 0, sizeof v); }
 void ban(int x, int y, int z, int u) {
 v[(x * 4 + y) * 4 + z][(y * 4 + z) * 4 + u] = 0;
 }
 } A[400], B[400];
 MTX mul(MTX a, MTX b) {
 MTX c;
 c.reset();
 rep(i, L) rep(j, L) rep(k, L) c.v[i][j] =
 (c.v[i][j] + 1ll * a.v[i][k] * b.v[k][j] % P) % P;
 return c;
 }
 int phi[N];
 void Get_Euler(int n) {
 for (int i = 1; i <= n; i++) phi[i] = i;
 for (int i = 2; i <= n; i++)
 if (phi[i] == i)
 for (int j = i; j <= n; j += i) phi[j] = phi[j] / i * (i - 1);
 }
 ll inv(ll a, ll m) { return (a == 1 ? 1 : inv(m % a, m) * (m - m / a) % m); }
 int main() {
 Get_Euler(100000);
 scanf("%d%d", &n, &m);
 A[1].reset(), A[1].conn();
 for (int i = 1; i <= m; i++) {
 int a, b, c, d;
 scanf("%d%d%d%d", &a, &b, &c, &d);
 A[1].ban(a, b, c, d);
 }
 int blk = sqrt(n + 0.5) + 1;
 A[0].init(), B[0].init();
 for (int i = 2; i <= blk; i++) A[i] = mul(A[i - 1], A[1]);
 B[1] = A[blk];
 for (int i = 2; i <= blk; i++) B[i] = mul(B[i - 1], B[1]);
 ll ans = 0;
 for (int i = 1; i * i <= n; i++) {
 if (n % i) continue;
 auto f = [&](int n) {
 ll t = 0;
 int b = n / blk, a = n % blk;
 auto tmp = mul(A[a], B[b]);
 for (int j = 0; j < L; j++) t = (t + tmp.v[j][j]) % P;
 return t;
 };
 ans = (ans + f(i) * phi[n / i] % P) % P;
 if (i * i != n) ans = (ans + f(n / i) * phi[i] % P) % P;
 }
 printf("%lld\n", ans * inv(n, P) % P);
 return 0;
 }
 
 |